全讯网新2-全讯网 百乐彩

導航
首頁 - 活動 - ISCA明哲論壇:NO.122 Robust Benchmark Satisficing
活動
ISCA明哲論壇:NO.122 Robust Benchmark Satisficing

報告題目:Robust Benchmark Satisficing

報 告 人:Melvyn Sim

報告時間: 2025年09月17日(周三)09:30-11:00

報告地點:明哲樓517

主辦單位:東北財經大學現代供應鏈管理研究院

【報告人簡介】

Dr Melvyn Sim is a Provost's Chair Professor in the Department of Analytics and Operations (DAO) at the National University of Singapore (NUS) Business School. His research interests broadly encompass decision-making and optimisation under uncertainty, with applications in finance, supply chain management, healthcare, and engineered systems. He currently serves as a Department Editor for Manufacturing and Operations Management (MSOM).

【摘要】

We propose a robust benchmark satisficing framework for data-driven decision-making under uncertainty, designed to identify decisions whose expected revenue exceeds that of a comparator by a user-specified surplus—even when the true distribution is unknown. This framework generalizes the robust satisficing model of Long et al. (2023), by accommodating a broader range of benchmark-driven decision criteria as individuals often evaluate their performance relative to others or to reference standards. Built on distributionally robust optimization, our model employs the Wasserstein metric to model distributional ambiguity while ensuring finite-sample performance guarantees. Within this framework, we identify the optimal linear transformation of the uncertain parameters that minimizes conservatism, formulated as a determinant minimization problem with an exponential moment constraint. When estimating the deviation matrix from data, we also introduce a spectral regularization constraint to limit its condition number and prevent its determinant from collapsing to zero. We derive tractable reformulations under various structural assumptions on both the primary and comparator revenue functions, including settings with linear recourse. We validate the framework through two computational studies. In a portfolio optimization problem, our model consistently outperforms an equal weighted benchmark, offering improved risk-return profiles, especially with our proposed deviation matrices. In a multi-product newsvendor setting, where product demands depend on S&P 500 and gold prices, the model ensures revenue superiority over the better-performing benchmark. Together, these results underscore the framework’s flexibility and practical effectiveness in benchmark-driven, uncertain environments.



撰稿:王戈 審核:許建軍 單位:現代供應鏈管理研究院

新 聞
大发888xp缺少 casino| 大发888娱乐场下载ypu rd| A8百家乐官网娱乐网| 香港六合彩挂牌| 威尼斯人娱乐789399| 网上百家乐有没有假| 澳门百家乐官网路单| 百家乐官网网投打法| 百家乐游戏网上投注| 百家乐官网现金网最好的系统哪里有可靠吗| 旧金山百家乐的玩法技巧和规则 | 在线百家乐安卓| 百家乐游戏真钱游戏| 金满堂百家乐的玩法技巧和规则| 大发888 娱乐场| 鸿博娱乐城| 新澳博娱乐| 乌海市| 百家乐平台| 免费百家乐平预测软件| 大发888真人网| 岳普湖县| 百家乐官网平注胜进与负追| 玩百家乐保时捷娱乐城| 澳门赌百家乐官网能赢钱吗| 迷你百家乐论坛| 怎么玩百家乐网上赌博| 百家乐博彩的玩法技巧和规则 | 和记娱乐| 八运24山阴阳| 电玩城百家乐技巧| 百家乐官网金海岸娱乐| TT百家乐官网现金网| 真博百家乐官网的玩法技巧和规则| 威尼斯人娱乐骰宝| 足球竞猜| 娱百家乐下载| 利高国际娱乐网| 百家乐智能分析软| 威尼斯人娱乐场首页| 百家乐官网已破解的书籍|