全讯网新2-全讯网 百乐彩

導航
首頁 - 活動 - ISCA明哲論壇:NO.122 Robust Benchmark Satisficing
活動
ISCA明哲論壇:NO.122 Robust Benchmark Satisficing

報告題目:Robust Benchmark Satisficing

報 告 人:Melvyn Sim

報告時間: 2025年09月17日(周三)09:30-11:00

報告地點:明哲樓517

主辦單位:東北財經大學現代供應鏈管理研究院

【報告人簡介】

Dr Melvyn Sim is a Provost's Chair Professor in the Department of Analytics and Operations (DAO) at the National University of Singapore (NUS) Business School. His research interests broadly encompass decision-making and optimisation under uncertainty, with applications in finance, supply chain management, healthcare, and engineered systems. He currently serves as a Department Editor for Manufacturing and Operations Management (MSOM).

【摘要】

We propose a robust benchmark satisficing framework for data-driven decision-making under uncertainty, designed to identify decisions whose expected revenue exceeds that of a comparator by a user-specified surplus—even when the true distribution is unknown. This framework generalizes the robust satisficing model of Long et al. (2023), by accommodating a broader range of benchmark-driven decision criteria as individuals often evaluate their performance relative to others or to reference standards. Built on distributionally robust optimization, our model employs the Wasserstein metric to model distributional ambiguity while ensuring finite-sample performance guarantees. Within this framework, we identify the optimal linear transformation of the uncertain parameters that minimizes conservatism, formulated as a determinant minimization problem with an exponential moment constraint. When estimating the deviation matrix from data, we also introduce a spectral regularization constraint to limit its condition number and prevent its determinant from collapsing to zero. We derive tractable reformulations under various structural assumptions on both the primary and comparator revenue functions, including settings with linear recourse. We validate the framework through two computational studies. In a portfolio optimization problem, our model consistently outperforms an equal weighted benchmark, offering improved risk-return profiles, especially with our proposed deviation matrices. In a multi-product newsvendor setting, where product demands depend on S&P 500 and gold prices, the model ensures revenue superiority over the better-performing benchmark. Together, these results underscore the framework’s flexibility and practical effectiveness in benchmark-driven, uncertain environments.



撰稿:王戈 審核:許建軍 單位:現代供應鏈管理研究院

新 聞
大发888免费软件下载| 威尼斯人娱乐场 澳门| 百乐坊百家乐官网娱乐城| 百家乐的赚钱原理| 安宁市| 财富百家乐官网的玩法技巧和规则 | 大发888娱乐客户端真钱| 百家乐好不好玩| 百家乐官网轮盘怎么玩| 网上百家乐必赢玩| 百家乐官网赌博技巧大全| 网上棋牌是真的吗| 尊龙百家乐官网娱乐平台| 大发888游戏平台hg dafa888 gw| 百家乐的打法技巧| 马牌娱乐城| 百家乐官网网络游戏信誉怎么样| 大发888娱乐城888bg| 百家乐3带厂家地址| 广昌县| 手机棋牌游戏| 百家乐利来| 百家乐有多少局| 百家乐官网跟路技巧| 新全讯网carrui| 百家乐官网投注平台导航网| 大发888现金存款| 仕達屋百家乐的玩法技巧和规则| 博E百百家乐官网现金网| 元游棋牌官网| 威尼斯人娱乐场荷官| 百家乐赌机玩法| 百家乐体育nba| 明珠百家乐官网的玩法技巧和规则| 新澳门百家乐官网软件下载| 大发888游戏下载46| 瑞士百家乐的玩法技巧和规则| 网上百家乐官网娱乐平台| 和静县| 淘金盈开户| 海港城百家乐官网的玩法技巧和规则 |